header-image

Analysis.Inspiration.Invention.Art.

Ramblings from Gus Panella

Blog

Site Overview

Site Overview
Well, the server is somewhere in the United States. But, the content of the site is generated in Naperville, Illinois.

Why is the Minorchord website here?
Initially, “Minorchord.com” was created in order to not have email addresses linked to an ISP. But, is expanding into a hub to consolidate topics of personal interest and experience.

“Minorchord”… is this somehow related to music?
Yes. The underlying thought behind the URL is related to the “minorchord” associated with music. Specifically blues and jazz. Strictly speaking, a “minorchord” is a very small change to a major chord, that has a uniquely satisfying effect. This effect can can completely change the landscape of a composition or a technology. Quite possibly, the true root of innovation.

Impact

GENERAL

  • Versatility, accountability, execution
  • Artistic, creative, vision

PROFESSIONAL

  • Strong strategic and long-range planning
  • Identifying and exploiting product, technology, and market gaps
  • Concise communication of engineering and technical strategies to all levels
  • Building, leading and inspiring cross-functional engineering teams across multiple geographies and cultures
  • Due diligence, intellectual property mapping, technology licensing & acquisition

DISCIPLINES

  • Research and Development
  • Electrical, Embedded Hardware, Networking, HPC
  • Mechanical, Process, Electro-chemical, Metallurgy, Plastics
  • Intellectual property, technology and partnership agreements
  • Due diligence, technology review, road-mapping

ACROSS BORDERS

  • North America
  • Asia: China (Dongguan, Chengdu, Shanghai and Hong Kong), Japan, Korea, Malaysia, Singapore, Taiwan, India
  • Europe: England, Germany, Ireland, Finland
  • Middle East

 

Patents

5428187
A shielded hybrid ribbon cable assembly is provided for conducting electrical power and data signals. The assembly includes a plurality of spaced, parallel, power conductors and a plurality of data signal conductors. An insulating material holds together and electrically insulates the plurality of conductors. An electrically conductive shield is disposed about at least the data signal conductors for shielding electromagnetic capacitive interference. An inductive shielding means is interposed between the power conductors and the data signal conductors for shielding the signals of the data signal conductors from inductive magnetic interference generated by the power conductors.

5585713
A dimmer circuit uses a triac for controlling application of power to a hot terminal where a load will be connected. A DC power supply develops DC power for powering a control circuit which includes a zero crossing detector circuit connected to an integrated circuit chip which develops a timer pulse at the appropriate time to dim the light. The timer pulse is output to a pulse stretching circuit which actually drives the triac. The pulse stretching circuit stretches the pulse to a maximum of one-half of a cycle. This ensures that the triac will be turned on even if the inductive current delays the establishment of adequate latching current. This creates a more symmetrical waveform and results in a reduced DC offset.

5820393
An electrical connector is disclosed for mounting on a printed circuit board. The connector includes a dielectric housing having a mating portion. A plurality of terminals are mounted in the housing and include tail portions extending therefrom. A conductive shell is mounted on the housing at least about the mating portion thereof. A conductive electrostatic discharge plate is mounted about the tail portions creating a predetermined spark gap between the plate and the tail portions to pass a current when a predetermined voltage exists between the plate and the tail portions. A conductive board lock holds the connector to the printed circuit board and is adapted for connection to a ground circuit on the board. The board lock engages the conductive shell and the conductive electrostatic discharge plate to common the shell and the plate with the ground circuit on the printed circuit board.

5834700
An electrical circuit arrangement includes at least three adjacent spaced-apart, elongate parallel conductors. Specifically, a middle conductor has two oppositely facing first and second surfaces. A left conductor has a surface facing the first surface of the middle conductor to define a first electrical coupling. A right conductor has a surface facing the second surface of the middle conductor to define a second electrical coupling. The shape of the facing surfaces between the left conductor and the middle conductor is different from the shape of the facing surfaces between the right conductor and the middle conductor. Therefore, the electrical characteristics of the first electrical coupling is different from the electrical characteristics of the second electrical coupling.

6015299
A card edge connector for mounting on a circuit board and removeably receiving a circuit card includes an elongated housing defining a card receiving slot. Numerous terminal receiving cavities intersect and extend to both sides of the slot. Alternate cavities include stamped reference (ground or power) terminals and signal terminals, all having downwardly extending board contacts and upwardly extending spring arms. There are numerous similar sets of face to face contacts, each including a reference contact parallel to and substantially overlying an opposed pair of signal contacts. The upwardly extending reference terminal spring arms include oversize pad portions for reducing crosstalk by increasing coupling between the reference and signal terminals. The circuit paths to the circuit board are in an array symmetrical about the centerline of the circuit card, with parallel inner lines of circuits containing only reference contacts and outer lines of circuits containing only signal contacts.

6095821
A card edge connector for mounting on a circuit board and removeably receiving a circuit card includes an elongated housing defining a card receiving slot. Numerous terminal receiving cavities intersect and extend to both sides of the slot. Alternate cavities include stamped reference (ground or power) terminals and signal terminals, all having downwardly extending board contacts and upwardly extending spring arms. There are numerous similar sets of face to face contacts, each including a reference contact parallel to and substantially overlying an opposed pair of signal contacts. The upwardly extending reference terminal spring arms include oversize pad portions for reducing crosstalk by increasing coupling between the reference and signal terminals. The circuit paths to the circuit board are in an array symmetrical about the centerline of the circuit card, with parallel inner lines of circuits containing only reference contacts and outer lines of circuits containing only signal contacts.

6095872
Provided is an electrical connector for connecting a first electrical component to a circuit member having generally oppositely facing mating and remote surfaces and conductive regions on at least one of the mating and remote surfaces, at least one of the conductive regions being a through hole. The connector includes a dielectric housing having a receiving area for receiving the first electrical component therein and a plurality of terminal receiving cavities extending generally perpendicularly to at least one of the surfaces. The connector further includes a terminal in one of the terminal receiving cavities. The terminal has a body portion, a contact arm extending from the body portion for electrically contacting the first electrical component, a retention portion for retaining the terminal in the cavity, and a board contact extending from the body portion to the through hole. The board contact is a through hole-type tail for extending through the through hole. The tail includes a full segment and an abutting narrowed segment, each segment having edges and a centerline generally perpendicular to the mating surface, the centerline of the narrowed segment being offset from the centerline of the full segment. A transition between the abutting segments is positioned between the mating and remote surfaces of the circuit member when the connector is mounted to the circuit member.

6254435
An edge card electrical connector is adapted for receiving an edge of a printed circuit board having contact pads on at least one side of the board adjacent the edge. The connector includes an elongated dielectric housing having a board-receiving face with an elongated slot for receiving the edge of the printed circuit board. A plurality of terminal-receiving cavities are spaced longitudinally of the slot along at least one side thereof and separated by transverse walls. A plurality of first and second terminals are received in the cavities. The shapes of the terminals are such as to provide excellent capacitive coupling between the first and second terminals to improve electrical performance and reduce crosstalk of the connector.

6362972
A contactless interconnecting system is provided between a computer chip package and a circuit board. The system includes a computer chip package having a silicon wafer mounted on a support structure which includes a wall with a substantially planar upper surface. The wall is fabricated of a dielectric material. A pattern of discrete terminal lands are disposed on the upper surface of the wall and are electrically coupled to the silicon wafer. A circuit board is juxtaposed below the wall of the chip package and includes a substantially planar upper surface having a pattern of discrete circuit pads aligned with the terminal lands.

6425766
A connector system including a circuit card and method of manufacturing same is provided. By way of example, the system includes a connector having an elongated housing with an elongated card-receiving slot. A plurality of signal terminals and ground terminals are mounted on the housing along the slot and have contact sections extending into the slot. A circuit card has an edge insertable into the slot, a ground plane facing a surface of the card at least near the edge and a plurality of signal contact pads and a plurality of ground contact pads along the edge for engaging the contact sections of the signal terminals and the ground terminals, respectively. The size or area of the signal contact pads is varied relative to the ground contact pads to vary the capacitance in the area of the terminal-to-circuit card interface and, thereby, vary the impedance of the system.

6439931
A method and structure of an electrical connector is provided for tuning the impedance of the terminals in the connector. The connector includes a dielectric housing having a plurality of terminal-receiving passages. A plurality of terminals are shaped from sheet metal material, with each terminal having a contact portion at one end and a terminating portion at an opposite end. The contact portion has a contact area which engages a mating terminal of a complementary mating connecting device. The contact portion, except for the contact thereof, or the tail portion, is selectively trimmed to a given size to vary the plate area of the contact portion or the tail portion to adjust the impedance of the terminal. This may be done by removing sections of the contact portion from the contact edges or by forming holes in the contact portions. Alternatively, to adjust impedance, a drive shoulder of the terminal may be located at a position to lengthen or shorten the contact portion or tail portion.

6612852
A contactless interconnecting system is provided between a computer chip package and a circuit board. The chip package has a substantially planar lower surface with a pattern of discrete terminal lands. The circuit board has a substantially planar upper surface spaced from and generally parallel to the lower surface of the chip package. A pattern of discrete circuit pads on the upper surface are aligned with the terminal lands. A plurality of discrete interposer members are disposed between the terminal lands and the circuit pads and are in a pattern corresponding to and aligned with the aligned patterns of the terminal lands and circuit pads. The interposer members are preferably of a material having a higher dielectric constant that of the material filling the gaps between interposer members.

6617252
A contactless interconnecting system is provided between a computer chip package and a circuit board. The chip package has a substantially planar lower surface with a pattern of discrete terminal lands. The circuit board has a substantially planar upper surface spaced from and generally parallel to the lower surface of the chip package. A pattern of discrete circuit pads on the upper surface are aligned with the terminal lands. A plurality of discrete interposer members are disposed between the terminal lands and the circuit pads and are in a pattern corresponding to and aligned with the aligned patterns of the terminal lands and circuit pads. The interposer members are preferably of a material having a higher dielectric constant that of the material filling the gaps between interposer members.

6767252
A differential signal connector that is used for edge card application has a plurality of differential signal terminals and associated ground terminals arranged in “triplets”, i.e., distinct sets of three conductive terminals, each such triplet including a pair of differential signal terminals and one associated ground terminal. The ground terminal is flanked by the two differential signal terminals and each triplet is spaced apart from an adjacent triplet by a spacing which is greater than any single spacing between adjacent terminals within a triplet. Circuit boards to which such a connector is mounted are also disclosed and they have a particular pattern of termination traces, commonly taking the form of plated vias extending through the circuit board. These vias are arranged in a triangular pattern and the ground reference plane of the circuit board is provided with voids, one void being associated and encompassing a pair of the differential signal vias of a single terminal triplet. This reduces the capacitance of the signal vias and thereby increases the impedance of the circuit board within the launch area to lessen impedance discontinuities in the connector-circuit board interface.

6837719
A substrate carries a voltage regulator module and a connector. By co-locating a voltage regulator to a processor or other circuit requiring a regulated power supply, distributed inductance associated with conventional circuit traces is reduced, thereby lessening demands on a voltage regulator and improving regulated voltage. A connector on the substrate can include internal filter capacitors to stabilize the output voltage from a voltage regulator. When the substrate is mounted to a circuit board, addition capacitors can be provided above and/or below the circuit board to which the substrate can be connected attached.

6853559
A system for delivering power to an integrated circuit includes a decoupling capacitance located in a connector that is formed as a socket, or frame for the IC. The power delivery system takes the form of a power reservoir that is integrated into a connector, thereby eliminating the need for complex and expensive power traces to be formed in or discrete capacitors mounted on a circuit board to which the IC is connected. The power reservoir is integrated into a cover member that fits over the IC and which contains a recess that accommodates a portion of the IC therein. The cover member includes at least one opening that opens up to a operational surface of the integrated circuit. A heat-dissapating device, such as a finned heat sink or the like is supported by the cover member and extends through its opening into contact with a heat-generating surface of the integrated circuit to cool it during operation.

6885563
Systems for power delivery, signal transfer, package design, thermal management, and electromagnetic interference (“EMI”) control are provided to support an integrated circuit (“IC”). The power delivery system includes a power supply, a voltage regulator module and a decoupling capacitance in the form of discrete and/or integral capacitors. The voltage regulator module and decoupling capacitance are located in a connector that may be formed as a cover, socket or a frame for the IC. The power delivery system delivers power to the IC along top, bottom or sides of the IC. The signal transfer system couples signals from the IC to one or more circuits on a circuit board. The package design system for the IC permits signals and/or power to be coupled to selected sides of the IC at connections outside, flush with, recessed or inside the IC package. The package design system also permits the transferred signals to have different frequencies, such as high and low frequencies, and to utilize different types of signal interfaces, such as galvanic, capacitive or the like. The thermal management system utilizes a heat sink, a fan and/or a heat spreader to dissipate heat generated by the IC and/or voltage regulator module. The EMI control system blocks EMI generated by the IC.

6888235
Systems for power delivery to an integrated circuit include a decoupling capacitance located in a connector that is formed as a socket, or frame for the IC. The power delivery system delivers power to the IC along various surfaces thereof by way of a plurality of discrete capacitors that are supported by a socket-style connector. The socket-style connector has an insulative body portion that is mounted to a circuit board and has a recess defined thereon that receives the IC therein. A plurality of capacitors are integrated with the body portion and, each of the capacitors supplies a desired amount of power to the IC. The capacitors are charged by way of leads on the circuit board that bring power to current to the capacitors and then are discharged as the IC draws power from the socket such that the capacitors form a power reservoir integrated with the socket, thereby eliminating the need for mounting such capacitors on the circuit board near the IC and freeing up space on the circuit board.

6936917
A system for delivering power to an integrated circuit includes a decoupling capacitance located in a connector that is formed as a socket, or frame for the IC. The power delivery system takes the form of a power reservoir that is integrated into a connector, thereby eliminating the need for complex and expensive power traces to be formed in or discrete capacitors mounted on a circuit board to which the IC is connected. The system includes a connector that takes the form of a cover member that fits over the IC and which contains a recess that accommodates a portion of the IC therein. The cover member includes at least a pair of spaced-apart capacitor plates that are disposed therewithin. Electricity is supplied to the plates so that they will become charged as a capacitor and the plates are formed with a plurality of terminals that extend into contact with the IC so that the plates may selectively discharge to the IC and thereby provide it with operating and surge currents.

7095619
A processor mounted to a circuit board is provided with regulated voltage through lower-inductance circuit board traces by mounting a voltage regulator module for the processor, on the side of the circuit opposite to the processor. Current from the voltage regulator is provided to the processor by way of one or more conductors between the regulator and processor that extend through the circuit board from one side to the other. Inductance attributable to lead length is reduced by locating the voltage regulator close to its load. Circuit board space on the processor side of the circuit board is increased by moving the voltage regulator to the opposite side.

7298628
A processor mounted to a circuit board is provided with regulated voltage through lower-inductance circuit board traces by mounting a voltage regulator module for the processor, on the side of the circuit opposite to the processor. Current from the voltage regulator is provided to the processor by way of one or more conductors between the regulator and processor that extend through the circuit board from one side to the other. Inductance attributable to lead length is reduced by locating the voltage regulator close to its load. Circuit board space on the processor side of the circuit board is increased by moving the voltage regulator to the opposite side.

7568960
The present disclosure is directed to connectors and methods for passing signals through capacitive coupling and electron tunneling. The connectors according to the present disclosure can include contacts that have a dielectric film or coating applied at least at a contact interface area where the contacts engage with the contacts of a complementary mating connector. The contacts of the either or both of the connector and complementary connector can be coated with a dielectric film. The dielectric film can be selected from metal oxides and can be applied using known methods such as vapor deposition methods, oxidative methods, plating methods and adhesive coating methods. Performance parameters such as capacitance and resistance can be selected by selecting the material for the film and the thickness of the dielectric film and provides a contrast between the requirements for high frequency signal transfer using capacitive coupling and electron tunneling versus traditional metallic contact.